
CROSSTALK The Journal of Defense Software Engineering 11April 1998

Modern software developers
are guided by a variety of
formal and informal processes

that help to organize and control devel-
opment activities across large groups of
developers or multiple organizations.
These processes supply the discipline
and order lacking in many early devel-
opment efforts. The currently available
inventory of documented process meth-
ods has a limitation: most assume the
system being built will be coded largely
from scratch. As a result, the processes
do not address many of the challenges
associated with building systems that
contain large amounts of commercial-
off-the-shelf (COTS) software.

The Infrastructure Incremental De-
velopment Approach (IIDA) is a combi-
nation of the classical development
model and the spiral process model to
accommodate the needs of COTS-based
technical infrastructure development.
Each stage of the development cycle is
augmented with a series of structured
prototypes for COTS product evalua-
tion and integration. This close coupling
of prototyping and development stages
characterizes the IIDA. The critical
success factors for this method are the
early establishment of an integrated
development environment in which to
install the COTS products and early
planning for the prototype integration
and testing environment, including
simulated applications and other test
software.

Application of IIDA
The following describes experiences
using the IIDA method from 1994 to
1997 to develop the initial versions of
an infrastructure to support business
applications developers for a large,
enterprise-wide heterogenous system.
The types of COTS products that were
integrated included
• Operating systems provided by four

different vendors.
• End-user interface COTS software

to provide a common graphical user
interface.

• Middleware COTS products to
provide a uniform transaction pro-
cessing capability.

• Combinations of COTS software
and glue code for specialized ser-
vices such as security and fail-over
recovery.

• Relational database management
systems.

• COTS applications for systems man-
agement, e.g., software distribution
and remote database administration.

Conventional and Unconventional
Wisdom
Assumptions at the beginning of the
development cycle were that the use of
infrastructure COTS products would
provide the following benefits.
• Using COTS products would re-

duce development costs and overall
schedule.

• As a corollary, the development
cycle would be accelerated.

• Feasibility demonstrations could be
put together quickly.

• End-product quality would be
higher as measured by a richer fea-
ture set and increased system ro-

bustness (assuming the selected
COTS product is mature) [1].

• COTS vendors would provide main-
tenance for their COTS products.
The experience of integrating infra-

structure COTS products and devel-
oped code refocused attention and
revealed an additional set of assump-
tions for future developments.
• Accelerated development catapults

you immediately into an integration
and test activity.

• Hands-on evaluation requires early
simulated applications in an inte-
grated environment; these simulated
applications and other test software
can represent significant develop-
ment costs.

• Maintenance on identified problems
is provided by the COTS software
vendor, but problem investigation
and identification by the integrator
are the most costly parts of COTS
software maintenance.

• Maintenance turnaround time by the
vendors can be a significant problem.

Lifecycle Implications
The development method must be
specifically tailored to accommodate
COTS product integration. This entails
a set of assumptions and constraints
quite different from custom-built devel-
opment. Some of the more important
of these follow. For a description of the
referenced development stages (defini-
tion and analysis, functional design,
physical design, and construction and
test), see Part I of this article.

The front-end processes in the defi-
nition and analysis stage must support
concurrent requirements and COTS
product analysis. The analysis prototype

A Software Development Process for COTS-Based
Information System Infrastructure

Part II: Lessons Learned
Greg Fox and Steven Marcom, TRW

Karen W. Lantner, EDS

Part I of this article (CROSSTALK, March 1998) described the Infrastructure Incremen-
tal Development Approach process model. Part II describes a particular application of
that model and examines the practical lessons learned and pitfalls encountered.

© 1997 IEEE. This material is adapted and
reprinted with permission from a paper pre-
sented at the IEEE/SEI-sponsored Fifth Inter-
national Symposium on Assessment of Software
Tools and Technologies, Pittsburgh, Pa., June
3-5,1997, pp. 8-10.

12 CROSSTALK The Journal of Defense Software Engineering April 1998

in the functional design stage must
provide for iteration and a flexible link-
age between the COTS product evalua-
tions and the feedback loop to require-
ments analysis.

During the construction stage, the
development processes acquire a dual
nature when COTS product integration
is introduced. One process path is valid
for COTS product integration, and
another process path is valid for develop-
ing the glue code and custom-built com-
ponents. These two process paths are
equivalent but consist of different activi-
ties and products. In addition, all COTS
products, glue code, and custom-built
components must be integrated together
to complete development.

During the construction stage, the
development of glue code that inte-
grates COTS products and fills in miss-
ing functionality is similar to the devel-
opment of traditional software; the
traditional process of coding, unit test-
ing, and integration is applicable.

For COTS products, the construc-
tion stage is when COTS products un-
dergo detailed tuning and configuration
and when the interfaces and threads
between components are exercised in a
multi-COTS product environment.
COTS product tuning, configuration,
and integration have an analog to code
and unit-test activities. Unit test with
COTS products is “black-box” (vs.
“white-box”) testing, and the focus is on
interfaces and COTS product behavior.
For example, unit testing of the transac-
tion processing monitor consisted of
exercising all the application program-
ming interface (API) calls supported by
the product as configured within the
target environment.

Traditional software maintenance
activities must be expanded in scope and
extended to provide continuing COTS
product support. This support starts
early in the lifecycle. Application devel-
opers must have early deliveries and
training for partially completed infra-
structure functionality to keep their
development lifecycle within reasonable
time frames. Developers also require on-
site, hands-on direct support from infra-
structure developers and integrators to

ensure acceptance and proper use of the
infrastructure products.

Configuration control must be
organized and in place early to accom-
modate multiple versions of the COTS
products and configuration files. Sepa-
rate environments for development and
integration must be well-defined and
structured to accept the delivered
COTS products. Early support for
multiple baselines must be in place as
the combinations of COTS products
become complex.

Throughout the lifecycle, feedback
loops allow ongoing re-evaluation of
the COTS products. Analysis proto-
types (functional design stage) deter-
mine feasibility of a COTS-based solu-
tion and provide feedback to the
requirements definition (definition and
analysis stage). Design prototypes
(physical design stage) provide hands-
on experience with potential COTS
products and feedback to the COTS
product selection process (functional
design stage). Detailed design proto-
types (physical design stage) exercise
functionality of selected COTS prod-
ucts, verify adherence and consistency
with design expectations, reveal detailed
behavior and performance characteris-
tics, and give insight into the invoca-
tion parameters. The demonstration
prototype (construction and test stages)
is used to unit test the COTS products
using black-box testing to simulate
application behavior or environment.
Each stage is a potential source of feed-
back to previous stages.

Practical Considerations
The following practical considerations
were encountered during two years of
experience using the IIDA.
• The COTS product integrator does

not develop the COTS product but
still must internally know it. The
integrator must understand the
complete set of capabilities provided
by the COTS product to select the
appropriate subset of capabilities
based on application developer
needs for a given release of infra-
structure. The integrator must un-
derstand the limitations and nu-
ances of the COTS product to

exercise it. For example, does it run
on all of the required platforms?
Does it operate the way it is in-
tended? Does it have a heritage from
a different paradigm (PC vs. UNIX
workstation)?

• The system administrators and
configuration management staff
need to know how to configure the
COTS products. Few complex
COTS products work straight out
of the box. To support early proto-
types and evaluations, not only do
the designers and developers need to
understand the products, the devel-
opment system administrators need
to understand how to install and
manage the product configuration.
In addition, configuration manage-
ment needs to understand how to
configure the product versions.

• “COTS castles are often built on the
sand of configuration files.” Configu-
ration files and data can be as com-
plex as code. They must be under-
stood. For example, a transaction
processing monitor configuration file
is inherently complex; training is
required to know how to use it. Con-
figuration files can be site-specific
and require a strategy to manage files
for different sites including site-
specific parameters, implementation
requests, and file distribution.

• When installing infrastructure com-
ponents in new sites, the following
documents that are not part of nor-
mal lifecycles are critical for the
configuration of COTS products.

• Release notes (installation
guidelines, operational param-
eters, tuning guidelines, etc.)

• Site configuration guidelines
(guidelines to help site designers
choose appropriate hardware and
software suites and rules for
scaling and resource allocation).

• Version compatibility between
COTS products, the operating sys-
tem, and glue code is critical. This
also applies to different sites includ-
ing the external integration and test
function. Software problems and
nuances of use discovered during
integration are not necessarily em-
bedded in selected COTS products

COTS Software

CROSSTALK The Journal of Defense Software Engineering 13April 1998

but often derive from specific char-
acteristics of operating system ver-
sions or communications protocols.
If application developers, infrastruc-
ture developers, and test sites are
allowed to independently manage
their computing platform configura-
tions (including operating system
and database management system),
trouble-shooting infrastructure
anomalies is extremely difficult.

• Licensing adds a dimension of com-
plexity and needs to be worked with
early. Issues include the number and
types of licenses required for the
environment. Short-term COTS
evaluation licenses need to be man-
aged, and transition needs to be
planned from evaluation to product
license. Procurement of production
licenses within government agencies
can require a long lead time and
needs to start early with the Bill of
Materials (BOM).

Technical Management
Considerations
The following considerations can be
easily overlooked during the planning
cycle.
• The development facility including

hardware, development tools, and
configuration management must be
ready to go before the first COTS
product arrives for prototyping.
Facility readiness fuels the acceler-
ated development that using COTS
products can provide but moves the
requirement for a fully implemented
development facility to early in the
effort. Determining COTS suitabil-
ity requires a realistic target configu-
ration with a strong system adminis-
tration team in place from the start.

• The BOM represents the contract
for COTS products and versions. It
is required early for field develop-
ment sites and is essential for suc-
cessful deployment.

• Technology infusion occurs by vir-
tue of COTS product upgrades
whether it is planned or not. Prod-
uct upgrades can occur during any
phase of the lifecycle. Allowing for
technology infusion can exploit new
potential products on the market.

• The investment in training is a
significant but often overlooked cost
of using COTS products. Manage-
ment needs to plan for the expertise
of individuals to be shared across
organizations. In particular, field
sites need training, especially in
system administration.

Conclusion
Integration with COTS software prod-
ucts requires adjustment and accommo-
dations to the development approach
vs. traditional software development.
Preparations must be made to start
prototyping activities and integration
activities immediately to exploit COTS
product advantages and accelerate de-
velopment. Additional resources must
be allocated for late in the development
cycle to provide maintenance and sup-
port to the user community, i.e., the
application developers. u

Acknowledgment
We thank David P. Maloney, a software
development manager at TRW, for his
contributions to this article. Many of
the insights in the application of IIDA
resulted from his work.

About the Authors
Greg Fox is a TRW
Systems Integration
Group technical fellow
and the director of
technology for the
Information Services
Division. He has 28

years experience in mostly large or com-
plex information systems. He has led the
architecture development and system
integration for several large COTS-based
systems and has been TRW’s information
systems infrastructure project manager
and chief architect for the Integration
Support Contract for Internal Revenue
Service (IRS) modernization. He has
engineering degrees from Massachusetts
Institute of Technology and University of
Southern California and has published
over a dozen papers.

TRW, Inc.
MVA1/4943
12900 Federal Systems Park Drive
Fairfax, VA 22033

Voice: 703-876-4396
E-mail: greg.fox@trw.com

Steven Marcom is a
senior systems analyst
with the TRW Informa-
tion Services Division.
He has 30 years mana-
gerial and technical
experience developing

computer systems for civil government,
defense, and commercial customers. He
was TRW’s systems lifecycle deputy man-
ager and information systems infrastruc-
ture process engineer for the Integration
Support Contract for IRS modernization.
He has been active in Rapid Application
Development, COTS integration, and
prototyping activities. He has a bachelor’s
degree from Pomona College and a
master’s degree from the American Uni-
versity of Beirut, both in mathematics.
He teaches software development and
integration at TRW.

TRW, Inc.
FP1
12900 Federal Systems Park Drive
Fairfax, VA 22033
Voice: 703-803-4814
E-mail: marcoms@gisdbbs.gisd.trw.com

Karen W. Lantner is a
program/project man-
ager for EDS in New
York City. She has 24
years management and
technical experience,
during which she has

managed and consulted on large federal
software development and COTS integra-
tion projects. A member of the team that
developed the EDS Systems Life Cycle
Methodology, she continues to have a
special interest in software development
methods. She has a bachelor’s degree and a
master’s degree from Brown University.

EDS
A5N-B50
13600 EDS Drive
Herndon, VA 22071
Voice: 800-336-4498, box no. 52032
E-mail: karen.w.lantner@aexp.com

Reference
1. Langley, R.J., “COTS Integration Is-

sues, Risks, and Approaches,” SIG
Technology Review, TRW Systems and
Integration Group, Vol. 2, No. 2, Win-
ter 1994, pp. 4-14.

A Software Development Process for COTS-Based Information System Infrastructure – Part II: Lessons Learned

